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Accuracy-control techniques applied to stable transfer-matrix computations

A. Mayer* and J.-P. Vigneron
Laboratoire de Physique du Solide, Faculte´s Universitaires Notre Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

~Received 17 February 1998; revised manuscript received 9 October 1998!

The transfer-matrix methodology is frequently used to deal with elastic scattering problems that require a
solution of the Schro¨dinger or homogeneous Maxwell equations in the continuous part of their spectra. The
numerical stability of the transfer-matrix algorithm can be dramatically improved by a subdivision of the
diffusive part of the system into several adjacent layers. However, until now, no accurate recommendation on
the number of layers to use was given. This paper presents the transfer-matrix technique and the layer addition
algorithm. A model is developed to analyze the accuracy of these techniques and enable a quantitative control.
As a result of the model, an expression for the minimum number of layers to consider in order to achieve a
given accuracy on the transfer-matrix computation is derived. The theory is illustrated by a simulation of
electronic field emission.@S1063-651X~99!02904-9#

PACS number~s!: 02.70.2c, 11.80.2m, 61.14.Dc
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I. INTRODUCTION

Linear systems of differential equations are frequently
countered in theoretical physics. Such equations indeed
pear when dealing with the Schro¨dinger equation in quantum
mechanics or with the Maxwell equations in electromag
tism. A useful property that appears in these situations is
additivity of solutions. When an analytic solution is not o
tainable, several numerical techniques exist to deal w
these equations in the energy or frequency continuum.

The transfer-matrix methodology@1–6# is one of these
techniques. To apply this methodology, the physical sys
considered should be located between two separate bo
aries. Given a set of basic states used for the wave func
expansion, the transfer matrices contain, for each state
dent on one boundary of the system, the amplitudes of
corresponding transmitted and reflected states.

The method basically depends on the additivity prope
of solutions and requires the numerical propagation of ba
states from one boundary to the other. Some of them
have transmission coefficients several orders of magnit
lower than others. All these numbers are gathered in a ma
that has to be inverted. The method reaches its limit w
the condition number of such matrices exceeds the repre
tation possibilities of the machine. The layer addition alg
rithm, introduced by Pendry@7,8# in dynamic a low-energy
electron diffraction~LEED! computation, enables the inve
sion of matrices associated with a smaller part of the to
system and therefore better conditioned.

This paper first presents the transfer-matrix technique
the layer addition algorithm in Secs. II and III. This prese
tation includes the implementation procedure that gives
most precise results. Since a subdivision of the system
several adjacent layers can improve the accuracy of the re
but only qualitative indications on how to split the syste
exist, a model is developed in Sec. IV to analyze the ac
racy of the layer addition algorithm. This model predicts t
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precision of a transfer-matrix computation and is used
Sec. V to determine the minimum number of subdivisions
consider in order to achieve a given accuracy on the resul
Sec. VI, the theory is applied to the simulation of electron
field emission.

II. TRANSFER-MATRIX METHOD

A. Presentation

Let us consider the scattering in a physical system m
of three adjacent regions and let us assume the interme
region to be the only diffusive part. The scanning tunneli
microscope@9# and the Fresnel projection microscope@10#
provide examples of such situations. Let us refer to the
termediate region as ‘‘region II’’ and the two other regio
as ‘‘region I’’ and ‘‘region III.’’ Let z be a coordinate axis
oriented from region I to region III, so that region II corre
sponds to the interval 0<z<D.

At this point, we should make the choice of simple ba
states to represent the waves in regions I and III. They sho
preferably be the same in both regions, but this is only
matter of convenience. Let us write these statesC j

I,6 in re-
gion I andC j

III, 6 in region III. The sign6 stands for the
direction of propagation relative to thez axis.

Let us writet0,D
11 and t0,D

21 for the matrices that contain in
each column the amplitudes of the respectively transmi
and reflected basic states corresponding to each basic
with unit amplitude injected fromz52`. Similarly, t0,D

22

and t0,D
12 collect the amplitudes of the transmitted and r

flected basic states corresponding to each basic state
unit amplitude coming fromz51`. The subscripts 0 andD
stand for the boundaries which limit the diffusive part of t
system.

B. Implementation

Let us now turn to the construction of two transfer mat
cest0,D

11 andt0,D
21 . To obtain them, each outgoing stateC j

III, 1

is considered individually and propagated backwards fr
z5D to z50, by using the relevant propagation equatio
The solution is then written as a combination of incide
ic
4659 ©1999 The American Physical Society
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4660 PRE 59A. MAYER AND J.-P. VIGNERON
statesC i
I,1 and reflected statesC i

I,2 . The following set of
solutions results from these operations:

C̄ j
1 5

z<0

(
i

Ai , jC i
I,11(

i
Bi , jC i

I,2 5
z>D

C j
III, 1 . ~1!

Since the relevant propagation equation is assumed t
linear, these solutions can be combined in order to deriv
set of solutions corresponding to a single incident stateC j

I,1

in region I:

C j
1 5

z<0

C j
I,11(

i
~ t0,D

21! i , jC i
I,2 5

z>D

(
i

~ t0,D
11! i , jC i

III, 1 .

~2!

The two transfer matricest0,D
11 and t0,D

21 are related to the
A and B matrices of Eq.~1! through t0,D

115A21 and t0,D
21

5B A21.
In the same way, each stateC j

I,2 can be considered indi
vidually and propagated backwards fromz50 to z5D,
where the solution is written as a combination of incide
statesC i

III, 2 and reflected statesC i
III, 1 . Another set of so-

lutions results:

C̄ j
2 5

z<0

C j
I,2 5

z>D

(
i

Ai , jC i
III, 21(

i
Bi , jC i

III, 1 . ~3!

Using again the linearity of the propagation equatio
these solutions can be combined to establish a set of s
tions corresponding to a single incident stateC j

III, 2 in region
III:

C j
2 5

z<0

(
i

~ t0,D
22! i , jC i

I,2 5
z>D

C j
III, 21(

i
~ t0,D

12! i , jC i
III, 1 .

~4!

The two transfer matricest0,D
22 and t0,D

12 are given by the
relations:t0,D

225A21 and t0,D
125B A21.

C. Advantage of a backwards numerical integration

To highlight the advantage of a backwards integration,
us consider the simple case whereC̄ j

1 takes the form of a
pair of exponential solutions in region II:

C̄ j~z! 5
0<z<D

M je
K jz1Nje

2K jz, ~5!

where K j would take the expression K j

5A(2m/\2)(V2E)1kj
2 with kj the transverse componen

of the wave vector associated with the stateC̄ j
1 , in the case

of tunneling through a potential barrier with heightV by
particles with energyE,V.

The coefficients are obtained from

M j5
1

2
S C̄ j

1~z5D !1
1

K j

dC̄ j
1~z5D !

dz
D e2K jD, ~6!
be
a

t

,
lu-

t

Nj5
1

2
S C̄ j

1~z5D !2
1

K j

dC̄ j
1~z5D !

dz
D e1K jD. ~7!

Since the states in region III are propagative,dC̄ j
1/dz(z

5D)5 ikz, jC̄ j
1(z5D), with kz, j the z component of the

wave vector associated with the stateC̄ j
1 in region III. It is

easy to check that

uM je
K jDu

uNje
2K jDu

51. ~8!

This relation means that the two parts of the solution c
tribute equally to the initial value ofC̄ j

1. By integrating
numerically fromz5D to z50, the exponentially increasing
solutionNje

2K jz will dominate the exponentially decreasin
M je

K jz. This last part of the solution will consequently va
ish from the small number of representative digits stored
the computer. This is, however, acceptable since the res
ing solution corresponds to the physical one. This appe
clearly if one considers the relation

uM je
K j0u

uNje
2K j0u

5e22K jD. ~9!

Since the coefficients of the matricesA and B depend
linearly on C̄ j

1(z50) and dC̄ j
1/dz(z50), the ratio be-

tween the contribution of the two parts of the solution
given by this last result.

From these arguments, it appears that the integration
~and therefore the matricesA andB) can achieve an excel
lent accuracy. The same comments apply to the matr
needed to computet0,D

22 and t0,D
12 . However, depending on

the peculiar values ofK j , these two matrices are likely to b
made of numbers with different orders of magnitude. Anti
pating the results of Sec. IV, the condition number of su
matrices is expected to be of the order ofeKmaxD, with
Kmax5A(2m/\2)V in the case of tunneling through a pote
tial barrier with heightV. The accuracy is then drasticall
reduced in the inversion step and can even be completely
if D were too large. From there come the limits of th
transfer-matrix technique. However, the layer addition alg
rithm allows us to deal with much larger distances.

III. LAYER ADDITION ALGORITHM

Since problems arise when systems characterized by l
integration distances are treated in a single step, a possib
to cope with them is to split this large distance into seve
adjacent layers. Their number is chosen so that each on
small enough to enable the computation of its individu
transfer matrices. The transfer matrices corresponding to
whole system are obtained by combination of the individ
transfer matrices. Pendry@7,8# has developed the appropria
formulas:

tz0 ,zi

11 5tzi 21 ,zi

11 @ I2tz0 ,zi 21

12 tzi 21 ,zi

21 #21tz0 ,zi 21

11 , ~10!

tz0 ,zi

21 5tz0 ,zi 21

21 1tz0 ,zi 21

22 tzi 21 ,zi

21 @ I2tz0 ,zi 21

12 tzi 21 ,zi

21 #21tz0 ,zi 21

11 ,

~11!
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tz0 ,zi

22 5tz0 ,zi 21

22 @ I2tzi 21 ,zi

21 tz0 ,zi 21

12 #21tzi 21 ,zi

22 , ~12!

tz0 ,zi

12 5tzi 21 ,zi

12 1tzi 21 ,zi

11 tz0 ,zi 21

12 @ I2tzi 21 ,zi

21 tz0 ,zi 21

12 #21tzi 21 ,zi

22 ,

~13!

where z050,•••,zi 21,zi,zi 11,•••,zn5D. This set
of formulas is used to compute iteratively the transfer ma
ces corresponding to thei first layers, as a combination of th
transfer matrices associated with thei 21 first layers and the
layer i. The transfer matrices of each individual slab a
computed with the method given in Sec. II B. The only m
trices needed at each stepi are the four transfer matrice
corresponding to the set of thei 21 first layers and those
corresponding to the last considered layeri.

IV. ACCURACY OF THE TRANSFER-MATRIX
COMPUTATION

A. Mathematical analysis of the accuracy

To represent the accuracy of a result, a distinction is m
between the true, but unknown, value of a matrixA and its
known approximate representationĀ. Their components can
be related by

Āi , j5~11dA; i , j !Ai , j , ~14!

wheredA; i , j stands for the relative error on the true value
Ai , j . We define the average relative error on the matrixA by

eA5

(
i , j

udA; i , jAi , j u

(
i , j

uAi , j u
. ~15!

We thus have a single parameter that takes into accoun
relative importance of each component. The result is con
ered meaningless ifeA.1.

The best possible accuracyecomp for a computer-stored
result depends on the representation limits of the mach
and is related to the largest numberx whose representatio
differs from x11. For a binary representation:

ecomp522nbit, ~16!

wherenbit is the number of bits used to represent the fr
tional part of reals. It is related to the number of bitsnexpt
used to represent the exponent part and the sign of real n
bers coded withr bytes bynbit58* r 2nexpt.

When operating with imperfectly represented matric
one wishes to know the accuracy of the result. Let us c
sider the effect on accuracy of three common operatio
multiplication, addition, and inversion.

1. Multiplication

Let A and B be matrices represented, respectively, w
an accuracyeA andeB . By application of the definition~15!,
one finds the following expression foreAB :
i-

-

e

f

he
d-

e

-

m-

,
-

s:

eAB5

(
i , j

U(
k

~dA; i ,k1dB;k, j !Ai ,kBk, jU
(
i , j

u~AB! i , j u
, ~17!

which is evaluated simply by

eAB5eA1eB . ~18!

2. Addition

By considering the components ofĀ and B̄ individually,
one finds

eA1B5

(
i , j

u@~dA; i , jAi , j1dB; i , jBi , j !/~Ai , j1Bi , j !#~A1B! i , j u

(
i , j

u~A1B! i , j u
,

~19!

which is evaluated by the~twice! weighted average

eA1B5

(
i , j

@~eAuĀi , j u1eBuB̄i , j u!/~ uĀi , j u1uB̄i , j u!#u~Ā1B̄! i , j u

(
i , j

u~Ā1B̄! i , j u
.

~20!

It easy to check that ifeA5eB5e, then we have also
eA1B5e. A useful property is

min~eA ,eB!<eA1B<max~eA ,eB!. ~21!

3. Inversion

When solving the equationA x5b, the relative errors of
all elements of the equation are related@11# by

uDxu
uxu

<
cond~A!

12cond~A!idAi /iAi S udbu
ubu

1
idAi
iAi D , ~22!

with cond(A) the condition number of the matrixA, majored
by

cond~A!<
maxul i u
minul i u

, ~23!

with maxuliu and minuliu the maximum and minimum abso
lute value of the eigenvalues ofA.

In the computation of the inverse ofA, b corresponds to a
column of the identity matrix andx to the corresponding
column of A21. ConsideringidAi /iAi5e A and uDxu/uxu
5eA21, one finds

eA215eAcond~A! ~24!

by assumingeA215eAcond(A) negligible compared to 1
This condition is fulfilled until the accuracy is complete
lost.
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4662 PRE 59A. MAYER AND J.-P. VIGNERON
B. Accuracy of a transfer-matrix computation
with no layer subdivision

Remembering the considerations of Sec. II C, the ac
racy of the matrixA is expected to be very good. Let u
assume it to beeA5ecomp. However, for a potential barrie
with heightV and lengthD the condition number cond(A) is
given by the ratio between the maximum possible value
Ai , j ~i.e., eKmaxD) and the minimum possible value~i.e., 1 if
propagative solutions exist in region II!; so one finds

e1slab5eKmaxDecomp, ~25!

with Kmax5A(2m/\2)V.

C. Accuracy of a transfer-matrix computation
with a layer subdivision

Let us assume the distanceD to be split inton layers with
the same lengthDslab5D/n. The four transfer matrices wil
be computed with the same accuracy:

eslab5eKmaxD/necomp. ~26!

Let us consider the construction of the matricest21.
They are updated iteratively by using Eq.~11!. In situations
of tunneling by particles with an energyE smaller than the
potential barrier height, all incident states are essentially
flected. In typical field emission applications, the top of t
potential barrier is located at the beginning of the inter
@0,D#. The first term of Eq.~11! stands for states that ar
reflected by the first layer encountered. The second t
stands for states that are reflected by the last layer con
ered. Since this term implies two tunneling processes ac
the first layer~which grows in the iterative construction!, it is
negligible compared to the first term and the accuracy of
transfer matricest21 has the accuracy of the matrix corr
sponding to the first layer. We can thus write the accuracy
the matrixt21 corresponding to thei first layers:

e t
i
215eslab. ~27!

Since this result is not used in the next part of the devel
ment, we do not have to care about the generality of
assumptions made to derive it.

Let us now consider the construction of the matricest12.
They are updated iteratively by using Eq.~13!. In general,
the situation differs from the previous case since the fi
layer encountered is not reflective for all incoming stat
The first term of Eq.~13! stands for states that are reflect
by the layeri. The corresponding accuracy iseslab. The sec-
ond term stands for states that are reflected by the seti
21 first layers and are transmitted twice through the layei.
Since propagative solutions exist in the layeri, all compo-
nents of the second term are not negligible compared
those of the first term. These propagative solutions are
flected by the set ofi 21 first layers and there is essential
no multiple scattering at the interface with the layeri. The
accuracy associated with the second term of Eq.~13! in the
step i is then given by 2eslab1e t

i 21
12. By taking the largest

value, we have a recursive equation fore t
i
12, whose solution

is
-

f

e-

l

m
id-
ss

e

f

-
e

t
.

f

to
e-

e t
i
125eslab~2i 21!. ~28!

Equations~10! and ~12! relevant to the matricest11 and
t22 imply the transmission across the set ofi 21 first layers
and the layeri. The factors@ I2tz0 ,zi 21

12 tzi 21 ,zi

21 #21 and @ I

2tzi 21 ,zi

21 tz0 ,zi 21

12 #21 stand for multiple scattering at the inte

face between the two layers considered. Since the matri
invert is made of numbers with the same order of magnitu
its accuracy is given bye t

i
121eslab. After the inversion, the

accuracy of these factors is multiplied by the condition nu
ber cond(P), where P stands for@ I2tz0 ,zi 21

12 tzi 21 ,zi

21 # or @ I

2tzi 21 ,zi

21 tz0 ,zi 21

12 #. This number is expected to be small due

the fact that the components of the matrices to invert are
of the same order of magnitude. Typical values of cond(P)
55 are encountered in applications. We thus have the
lowing recurrent relation for the accuracy of the two trans
matrices associated with reflection at stepi:

e i5eslab1e i 211cond~P!~e t
i 21
121eslab!. ~29!

By using the expression~28! for e t
i 21
12 and ~26! for eslab,

one finds the accuracy of a transfer-matrix computati
when performed by a subdivision inton layers:

en522nbiteA~2m/\2!VD/n

3$cond~P!n21@11cond~P!#n22 cond~P!%.

~30!

V. PRACTICAL CONSIDERATIONS

For practical purposes, the behavior of Eq.~30! is domi-

nated by the factoreA(2m/\2)VD/n, which decreases with in
creasingn. It is, however, to be noted that for extreme
large values ofn, the factor$cond(P)n21@11cond(P)#n
22 cond(P)% can make the relative erroren.1. This occurs
when 2nbit.cond(P)n2. In double precision (nbit553), n
has to take values around 107. The hypothesis behind th
model presented in Sec. IV C should not be valid for
many layers and the relative error should grow more rapid
This is expected since the contribution of evanescent stat
not negligible compared to propagative states for too t
layers ande t12 should grow more rapidly.

Since the distanceD appears only in the facto

eA(2m/\2)VD/n, it is possible to deal with large distances ju
by increasing the number of layers, as long asn does not take
extreme values.

A useful piece of information is the minimum number
layers to consider in order to obtain a relative erroren,1. If

we consider only the factoreA(2m/\2)VD/n, it is given by

nmin5
A~2m/\2!VD

nbitln~2!
, ~31!

for which eA(2m/\2)VD/nmin52nbit. This peculiar value ofnmin
corresponds to the minimum number of layers to conside
order to obtain significant transfer matrices in each layer.
a result of the presence of the factor$cond(P)n21@1
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1cond(P)#n22 cond(P)%, a larger number of layers has t

be considered. By considering the relationeA(2m/\2)VD/nmin

52nbit, it can be seen thatn52nmin gives results with ap-
proximatively one-half of the represented digits significa
and that this number increases by 50% by each further
crease ofnmin . We recommend to usen54nmin .

Another way to improve the accuracy consists in cons
ering only, at each step of the computation, the incid
states that have the highest transmission probability. T
restriction aims at reducing the local value ofKmax to some
fixed valueA(2m/\2)DE, whereDE can take the value of a
few electronvolts. The transfer matrices corresponding t
smaller number of basic states need less storage space
the time needed to compute them is also reduced. The
glected basic states are considered to be completely refle
by the layer and the corresponding coefficients in the tran
matrices associated with transmission~reflection! are set to
the value 0~1!.

VI. APPLICATION TO THE SIMULATION
OF FIELD EMISSION

A. Preliminaries

To illustrate this theory, let us consider the electronic fie
emission from a small tip and the diffraction of the extract
beam by a carbon fiber facing the emitter. The extract
field results from the application of a potential biasV estab-
lished between the metallic support of the tip and a cond
ing grid located at a distanceD. This grid supports the car
bon fiber.

Region I ~i.e., the metallic support of the tip! is a Som-
merfeld metal, delimited by the planez50 and characterized
by empirical values ofW ~work function! and EF ~Fermi
energy!. The potential energy in region III~i.e., the region
beyond the conducting gridz.D) is set conventionally to
the constant value 0. The potential energy value in region
thenVmet5eV2W2EF . With these assumptions, region
is the only diffusive part of the problem and, the Schro¨dinger
equation being linear, the transfer-matrix methodology c
be applied.

B. Wave function expansion

Let us assume the axial directionz to be ann̄-fold sym-
metry axis and let us use polar coordinates in the plane
mal to the symmetry axis~i.e.,f for the azimuthal angle and
r for the radial distance to the axis!. The wave function is
then expanded along basic functionsc that contain thef and
r dependences. The set of these functions is forced to
enumerable, by specifying that the scattering electron rem
localized inside a cylinder with radiusR @5#.

The basic statesC I,6 andC III, 6 introduced in Sec. II B to
describe the wave function in regions I and III take then
specific form

C~m, j !
I,6 5e6 iA2m~E2Vmet!/\

22km, j
2 zc~m, j !~r,f!, ~32!
t
n-

-
t
is

a
and
e-
ted
er

n

t-

is

n

r-

be
in

e

C~m, j !
III, 6 5e6 iA2mE/\22km, j

2 zc~m, j !~r,f!, ~33!

with

c~m, j !~r,f!5S Jm~km, jr!eimf

A2pE
0

R

r@Jm~km, jr!#2drD , ~34!

where all functions involved in these expressions have a
of subscripts (m, j ). The radial wave vectorskm, j are solu-
tions of Jm8 (km, jR)50.

C. Propagation equations

To propagate the wave functionsC̄ (m, j )
1 and C̄ (m, j )

2

through region II, we use the following expression:

FIG. 1. Potential-energy distribution~in eV! in the x-z plane
~top part! andy-z plane~bottom part!. A 25 V bias is applied over
the 4 nm separation between the metal surface and the condu
grid. This grid supports a carbon fiber oriented along thex axis.
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C̄~m, j !
6 5(

m, j
F~m, j !~z!c~m, j !~r,f!, ~35!

where thez dependence is contained in the coefficie
F (m, j )(z) of the expansion.

When this expression is introduced in the station
Schrödinger equation, the wave function expansion coe
cientsF (m, j )(z) verify the exact set of coupled equations
d

n
d

et
f

t
s
t
s

tia
er

o

s

y
-

d2F~m, j !~z!

dz2
1F2m

\2
E2km, j

2 2
2m

\2
V0~z!GF~m, j !~z!

5(
q

(
j 8

Mm, j
q, j 8~z!F~m2qn̄, j 8!~z!, ~36!

whereE is the electron energy and the coupling coefficie
Mm, j

q, j 8(z) are defined by the expression
Mm, j
q, j 8~z!5

2m

\2

E
0

R

rV̄q~r,z!Jm~km, jr!Jm2qn̄~km2qn̄, j 8r!dr

AE
0

R

r@Jm~km, jr!#2drAE
0

R

r@Jm2qn̄~km2qn̄, j 8r!#2dr

. ~37!
rid
y a
V
a

he
s

trix
to

lab

ng
15

a

In these expressions,V0(z) and V̄q(r,z) are the coeffi-
cients used in then-fold symmetric potential energy:

V~r,f,z!5V0~z!1 (
q52`

1`

V̄q~r,z!eiqn̄f, ~38!

where the choice ofV0(z) is arbitrary but should correspon
to the main part of the potential for better efficiency.

It is to be noted that the coupling between compone
with differentm subscripts occurs only when the correspon
ing m subscripts are separated by a multiple of the symm
axis ordern̄. There are thereforen̄ independent groups o
coupled components that can be treated independently in
transfer-matrix implementation. For details on how to u
Eqs. ~36! and ~37! and for the computation of the curren
density associated to all incident basic states in region I,
Refs.@12,13#.

FIG. 2. Accuracy of the transfer matrices for a 25 eV poten
barrier with a length of 4 nm, as a function of the number of lay
used to split this distance. Values of cond(P)510, nbit553 ~i.e.,
double precision! are assumed. The horizontal line corresponds t
100% relative error.
ts
-
ry

he
e

ee

D. Characterization of the physical system

Let us consider an electric bias of 25 V and a metal-g
distance of 4 nm. The bulk of the metal is characterized b
Fermi energy of 19.1 eV and a work function of 4.5 e
~values for tungsten!. The carbon fiber is assumed to have
dielectric constant of 16.5~value for diamond@14#! and a
work function of 4.82 eV~value for carbon materials@14#!. It
is infinite along thex axis and has a 0.8 nm section along t
y and z directions. The potential distribution in region II i
computed by overrelaxation~see Ref.@12#! and represented
in Fig. 1.

E. Accuracy considerations

It is possible to predict the accuracy of the transfer-ma
computation as a function of the number of layers used
split the distanceD by using expression~30!. A better esti-
mation is obtained by using the recurrent relationse t

i
12

52eslab1e t
i 21
12 and e i5eslab1e i 211cond(P)(e t

i 21
121eslab)

and considering the local potential barrier height in each s

l
s

a

FIG. 3. Cumulated relative error of the transfer matrices alo
the length of a 25 eV potential barrier, for 1, 3, 6, 9, 12, and
layers~from top to bottom!. Values of cond(P)510, nbit553 ~i.e.,
double precision! are assumed. The upper line corresponds to
100% relative error.
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FIG. 4. Current density (z component! computed on the extrac
tion grid. A 25 V bias is applied over the 4 nm separation betwe
this grid and a metal surface. The computation is performed res
tively with no layer subdivision~top part!, a subdivision into two
layers ~middle part!, and a subdivision into three layers~bottom
part!.
to define the corresponding value ofeslab. The result of this
estimation is illustrated in Fig. 2.

By using relation~31!, the minimum number of layers to
use is found to be 3, in agreement with the results prese
in Fig. 2. Expressions~30! and ~31! are derived by a mode
that considers the maximum potential-energy value enco
tered over the whole distanceD to estimateeslab in each
layer. This is the reason foren and nmin being in general
overestimated. Since larger values ofn are associated with a
better accuracy, expression~31! remains a useful result. I
can be seen in Fig. 2 that the gain in significant digits
reduced by a factor of 2 at each additional increase ofnmin
layers. This appears more clearly in Fig. 3, where the rela
error is represented as a function of the position in the len
D for 1, 3, 6, 9, 12, and 15 layers.

The result for one slab illustrates the limits of the transf
matrix methodology, when it is applied without the lay
addition algorithm: for a 25 eV potential barrier, all signifi
cant digits are lost after 1.4 nm. The figure shows clearly
improvement in accuracy due to a layer subdivision and c
firms 4nmin to be a good recommendation.

F. Results

The result of the simulations are presented in Fig. 4. T
figure shows the current density corresponding to all sta
incident in region I and evaluated in the planez5D. The
different parts of the figure correspond to a computat
without layer subdivision, with a subdivision into two layer
and a subdivision into three layers. No change is visi
when the number of layers is further increased~we tried up
to 400 layers!. In agreement with conclusions drawn fro
Fig. 2, a minimum of three layers is needed to obtain
significant result.

VII. CONCLUSION

The transfer-matrix methodology was presented. It
pears limited by numerical instabilities that were related
the physical characteristics of the system considered~poten-
tial barrier height and length!. The layer addition algorithm
comes as a solution to these problems.

To evaluate these methods and determine the minim
number of layers to use in order to obtain significant resu
a formalism was developed that accounts for the relative
ror on a computer-stored result. Simple rules were derive
update the accuracy evaluation in the case of matrix mu
plication, addition, and inversion. These rules can be use
evaluate the accuracy of a transfer-matrix computation
give predictions of this accuracy by physical consideratio

The theory was illustrated by a field emission simulatio
The model supplies useful information on the dependenc
accuracy on the number of layers. The predicted minim
number to use is in agreement with the results of the sim
lations.
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